PSMC6 - PSMC6
Regulační podjednotka 26S proteázy S10B, také známý jako 26S proteazomová podjednotka AAA-ATPázy Rpt4,je enzym že u lidí je kódován PSMC6 gen.[4][5][6] Tento protein je jednou z 19 základních podjednotek kompletního sestaveného proteasomového komplexu 19S[7] Šest 26S proteazomových AAA-ATPázových podjednotek (Rpt1, Rpt2, Rpt3, Rpt4 (tento protein), Rpt5, a Rpt6 ) společně se čtyřmi podjednotkami jinými než ATPase (Rpn1, Rpn2, Rpn10, a Rpn13 ) tvoří základní dílčí komplex regulační částice 19S pro proteazom komplex.[7]
Gen
Gen PSMC6 kóduje jednu z podjednotek ATPázy, člen rodiny triple-A ATPáz, které mají aktivitu podobnou chaperonu. Pseudogeny byly identifikovány na chromozomech 8 a 12.[6] Lidský gen PSMC6 má 15 exonů a lokalizuje se v pásmu chromozomů 14q22.1.
Protein
Regulační podjednotka proteinu 26S proteinu 26S S10B má velikost 44 kDa a skládá se z 389 aminokyselin. Vypočtená teoretická pí tohoto proteinu je 7,09.[8]
Složitá montáž
26S proteazom Komplex se obvykle skládá z 20S jádrové částice (CP nebo 20S proteazomu) a jedné nebo dvou 19S regulačních částic (RP nebo 19S proteazomu) na jedné nebo obou stranách 20S ve tvaru válce. CP a RP mají odlišné strukturní vlastnosti a biologické funkce. Stručně řečeno, subkomplex 20S představuje tři typy proteolytických aktivit, včetně aktivit podobných kaspázám, trypsinům a chymotrypsinům. Tato proteolytická aktivní místa umístěná na vnitřní straně komory tvořená 4 naskládanými prstenci 20S podjednotek, zabraňující náhodnému setkání protein-enzym a nekontrolované degradaci proteinu. Regulační částice 19S mohou rozpoznat ubikvitinem značený protein jako degradační substrát, rozvinout protein na lineární, otevřít bránu 20S jádrových částic a vést substrát do proteolytické komory. Pro splnění takové funkční složitosti obsahuje regulační částice 19S alespoň 18 konstitutivních podjednotek. Tyto podjednotky lze rozdělit do dvou tříd na základě závislosti podjednotek na ATP, podjednotek závislých na ATP a podjednotek nezávislých na ATP. Podle proteinové interakce a topologických charakteristik tohoto multisubunitního komplexu je regulační částice 19S složena ze základny a vícesměrného komplexu. Základ tvoří kruh šesti AAA ATPáz (podjednotka Rpt1-6, systematické názvosloví) a čtyř podjednotek jiných než ATPáz (Rpn1, Rpn2, Rpn10, a Rpn13 ). Regulační podjednotka 4 proteázy 26S (Rpt2) je tedy podstatnou složkou tvorby základního subkomplexu regulační částice 19S. Pro sestavení základního dílčího komplexu 19S byly čtyřmi skupinami nezávisle identifikovány čtyři sady klíčových montážních chaperonů (Hsm3 / S5b, Nas2 / P27, Nas6 / P28 a Rpn14 / PAAF1, nomenklatura v kvasinkách / savcích).[9][10][11][12][13][14] Tyto 19S regulační částice určené pro regulaci částicových bází se všechny vážou k jednotlivým podjednotkám ATPázy přes C-koncové oblasti. Například Hsm3 / S5b se váže na podjednotku Rpt1 a Rpt2 (tento protein), Nas2 / p27 až Rpt5, Nas6 / p28 až Rpt3 a Rpn14 / PAAAF1 až Rpt6, resp. Následně jsou vytvořeny tři mezilehlé montážní moduly následovně, modul Nas6 / p28-Rpt3-Rpt6-Rpn14 / PAAF1, modul Nas2 / p27-Rpt4-Rpt5 a modul Hsm3 / S5b-Rpt1-Rpt2-Rpn2. Nakonec se tyto tři moduly spojí dohromady a vytvoří heterohexamerický kruh 6 atlasů s Rpn1. Konečné přidání Rpn13 označuje dokončení sestavy dílčího komplexu základny 19S.[7]
Funkce
Jako degradační mechanismus, který je zodpovědný za ~ 70% intracelulární proteolýzy,[15] komplex proteazomu (26S proteazom) hraje klíčovou roli při udržování homeostázy buněčného proteomu. V důsledku toho je třeba nesprávně poskládané proteiny a poškozené proteiny neustále odstraňovat, aby se recyklovaly aminokyseliny pro novou syntézu; současně některé klíčové regulační proteiny plní své biologické funkce prostřednictvím selektivní degradace; dále se proteiny štěpí na peptidy pro prezentaci antigenu MHC I. třídy. Aby bylo možné splnit takové komplikované požadavky v biologickém procesu prostřednictvím prostorové a časové proteolýzy, musí být proteinové substráty dobře kontrolovány, rozpoznány, přijaty a nakonec hydrolyzovány. Regulační částice 19S tedy obsahuje řadu důležitých schopností řešit tyto funkční výzvy. Aby rozpoznal protein jako určený substrát, 19S komplex má podjednotky, které jsou schopné rozpoznat proteiny se speciální degradativní značkou, ubikvitinylací. Má také podjednotky, které se mohou vázat s nukleotidy (např. ATP), aby se usnadnila asociace mezi částicemi 19S a 20S a také způsobily potvrzovací změny C-terminálních podjednotek alfa, které tvoří vstup substrátu komplexu 20S.
Podjednotky ATPázy se shromažďují do šestičlenného kruhu se sekvencí Rpt1 – Rpt5 – Rpt4 – Rpt3 – Rpt6 – Rpt2, který interaguje se sedmičlenným alfa kruhem jádrové částice 20S a vytváří asymetrické rozhraní mezi 19S RP a 20S CP.[16][17] Tři C-koncové ocasy s HbYX motivy odlišných Rpt ATPáz se vkládají do kapes mezi dvěma definovanými alfa podjednotkami CP a regulují otevírání brány centrálních kanálů v CP alfa kruhu.[18][19] Důkazy ukázaly, že ATPázová podjednotka Rpt5 spolu s dalšími ubuiqintinovanými 19S proteazomovými podjednotkami (Rpn13, Rpn10 ) a deubikvitinační enzym Uch37, lze ubikvitinovat in situ ubikvitinačními enzymy sdružujícími proteazom. Ubikvitinace proteazomových podjednotek může regulovat proteazomální aktivitu v reakci na změnu úrovní buněčné ubikvitinace.[20]
Reference
- ^ A b C GRCh38: Vydání souboru 89: ENSG00000100519 - Ensembl, Květen 2017
- ^ „Human PubMed Reference:“. Národní centrum pro biotechnologické informace, Americká národní lékařská knihovna.
- ^ „Myš PubMed Reference:“. Národní centrum pro biotechnologické informace, Americká národní lékařská knihovna.
- ^ Fujiwara T, Watanabe TK, Tanaka K, Slaughter CA, DeMartino GN (červen 1996). „Klonování cDNA p42, sdílené podjednotky dvou regulačních proteinů proteazomu, odhaluje nového člena rodiny proteinů AAA“. FEBS Dopisy. 387 (2–3): 184–8. doi:10.1016/0014-5793(96)00489-9. PMID 8674546.
- ^ Tanahashi N, Suzuki M, Fujiwara T, Takahashi E, Shimbara N, Chung CH, Tanaka K (únor 1998). "Chromozomální lokalizace a imunologická analýza rodiny lidských 26S proteasomálních ATPáz". Sdělení o biochemickém a biofyzikálním výzkumu. 243 (1): 229–32. doi:10.1006 / bbrc.1997.7892. PMID 9473509.
- ^ A b „Entrez Gene: PSMC6 proteazom (prosom, makropain) 26S podjednotka, ATPáza, 6".
- ^ A b C Gu ZC, Enenkel C (prosinec 2014). "Proteasome shromáždění". Buněčné a molekulární biologické vědy. 71 (24): 4729–45. doi:10.1007 / s00018-014-1699-8. PMID 25107634.
- ^ „Uniprot: P62333 - PRS10_HUMAN“.
- ^ Le Tallec B, Barrault MB, Guérois R, Carré T, Peyroche A (únor 2009). „Hsm3 / S5b se účastní montážní dráhy regulační částice proteasomu 19S“. Molekulární buňka. 33 (3): 389–99. doi:10.1016 / j.molcel.2009.01.010. PMID 19217412.
- ^ Funakoshi M, Tomko RJ, Kobayashi H, Hochstrasser M (květen 2009). „Několik montážních chaperonů řídí biogenezi proteazomové regulační částicové báze“. Buňka. 137 (5): 887–99. doi:10.1016 / j.cell.2009.04.061. PMC 2718848. PMID 19446322.
- ^ Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi SP, Finley D (červen 2009). „Hexamerické shromáždění proteazomálních ATPáz je předvedeno v jejich C koncích“. Příroda. 459 (7248): 866–70. Bibcode:2009 Natur.459..866P. doi:10.1038 / nature08065. PMC 2722381. PMID 19412160.
- ^ Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D (červen 2009). „Chaperonem zprostředkovaná dráha regulační částice proteazomu“. Příroda. 459 (7248): 861–5. Bibcode:2009Natur.459..861R. doi:10.1038 / nature08063. PMC 2727592. PMID 19412159.
- ^ Saeki Y, Toh-E A, Kudo T, Kawamura H, Tanaka K (květen 2009). „Více proteinů interagujících s proteazomem pomáhá sestavení regulační částice kvasinek 19S“. Buňka. 137 (5): 900–13. doi:10.1016 / j.cell.2009.05.005. PMID 19446323.
- ^ Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (květen 2009). „Sestavovací dráha základního subkomplexu proteazomu savců je zprostředkována několika specifickými chaperony“. Buňka. 137 (5): 914–25. doi:10.1016 / j.cell.2009.05.008. PMID 19490896.
- ^ Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (září 1994). „Inhibitory proteazomu blokují degradaci většiny buněčných proteinů a tvorbu peptidů přítomných na molekulách MHC třídy I“. Buňka. 78 (5): 761–71. doi:10.1016 / s0092-8674 (94) 90462-6. PMID 8087844.
- ^ Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D (listopad 2011). „Asymetrické rozhraní mezi regulačními a jádrovými částicemi proteazomu“. Přírodní strukturní a molekulární biologie. 18 (11): 1259–67. doi:10.1038 / nsmb.2147. PMC 3210322. PMID 22037170.
- ^ Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (únor 2012). „Kompletní podjednotková architektura regulační částice proteazomu“. Příroda. 482 (7384): 186–91. Bibcode:2012Natur.482..186L. doi:10.1038 / příroda10774. PMC 3285539. PMID 22237024.
- ^ Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN (listopad 2008). „Diferenciální role konců COOH AAA podjednotek PA700 (regulátor 19 S) v asymetrickém sestavení a aktivaci proteasomu 26 S“. The Journal of Biological Chemistry. 283 (46): 31813–31822. doi:10,1074 / jbc.M805935200. PMC 2581596. PMID 18796432.
- ^ Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (září 2007). „Ukotvení karboxylových konců proteasomálních ATPáz v alfa prstenci proteasomu 20S otevírá bránu pro vstup do substrátu“. Molekulární buňka. 27 (5): 731–744. doi:10.1016 / j.molcel.2007.06.033. PMC 2083707. PMID 17803938.
- ^ Jacobson AD, MacFadden A, Wu Z, Peng J, Liu CW (červen 2014). „Autoregulace proteazomu 26S pomocí ubikvitinace in situ“. Molekulární biologie buňky. 25 (12): 1824–35. doi:10,1091 / mbc.E13-10-0585. PMC 4055262. PMID 24743594.
Další čtení
- Coux O, Tanaka K, Goldberg AL (1996). "Struktura a funkce proteazomů 20S a 26S". Roční přehled biochemie. 65: 801–47. doi:10.1146 / annurev.bi.65.070196.004101. PMID 8811196.
- Hastings R, Walker G, Eyheralde I, Dawson S, Billett M, Mayer RJ (duben 1999). „Aktivátorové komplexy obsahující proteazomální regulační ATPázy S10b (SUG2) a S6 (TBP1) v různých tkáních a organismech“. Zprávy o molekulární biologii. 26 (1–2): 35–8. doi:10.1023 / A: 1006903903534. PMID 10363644.
- Goff SP (srpen 2003). „Smrt deaminací: nový systém omezení hostitele pro HIV-1“. Buňka. 114 (3): 281–3. doi:10.1016 / S0092-8674 (03) 00602-0. PMID 12914693.
- DeMartino GN, Proske RJ, Moomaw CR, Strong AA, Song X, Hisamatsu H, Tanaka K, Slaughter CA (únor 1996). „Identifikace, čištění a charakterizace aktivátoru proteazomu závislého na PA700“. The Journal of Biological Chemistry. 271 (6): 3112–8. doi:10.1074 / jbc.271.6.3112. PMID 8621709.
- Seeger M, Ferrell K, Frank R, Dubiel W (březen 1997). „HIV-1 tat inhibuje proteasom 20 S a jeho aktivaci zprostředkovanou regulátorem 11 S“. The Journal of Biological Chemistry. 272 (13): 8145–8. doi:10.1074 / jbc.272.13.8145. PMID 9079628.
- Tipler CP, Hutchon SP, Hendil K, Tanaka K, Fishel S, Mayer RJ (prosinec 1997). "Čištění a charakterizace 26S proteazomů z lidských a myších spermií". Molekulární lidská reprodukce. 3 (12): 1053–60. doi:10.1093 / mol / 3.12.1053. PMID 9464850.
- Madani N, Kabat D (prosinec 1998). „Endogenní inhibitor viru lidské imunodeficience v lidských lymfocytech je překonán virovým proteinem Vif“. Journal of Virology. 72 (12): 10251–5. PMC 110608. PMID 9811770.
- Simon JH, Gaddis NC, Fouchier RA, Malim MH (prosinec 1998). "Důkaz pro nově objevený buněčný fenotyp anti-HIV-1". Přírodní medicína. 4 (12): 1397–400. doi:10.1038/3987. PMID 9846577.
- Russell SJ, Steger KA, Johnston SA (červenec 1999). „Subcelulární lokalizace, stechiometrie a hladiny proteinu 26 S proteazomových podjednotek v kvasinkách“. The Journal of Biological Chemistry. 274 (31): 21943–52. doi:10.1074 / jbc.274.31.21943. PMID 10419517.
- Mulder LC, Muesing MA (září 2000). „Degradace HIV-1 integrázy cestou N-end pravidla“. The Journal of Biological Chemistry. 275 (38): 29749–53. doi:10,1074 / jbc.M004670200. PMID 10893419.
- Russell SJ, Gonzalez F, Joshua-Tor L, Johnston SA (říjen 2001). „Selektivní chemická inaktivace proteinů AAA odhaluje odlišné funkce proteasomálních ATPáz“. Chemie a biologie. 8 (10): 941–50. doi:10.1016 / S1074-5521 (01) 00060-6. PMID 11590019.
- Sheehy AM, Gaddis NC, Choi JD, Malim MH (srpen 2002). „Izolace lidského genu, který inhibuje infekci HIV-1 a je potlačena virovým proteinem Vif“. Příroda. 418 (6898): 646–50. Bibcode:2002 Natur.418..646S. doi:10.1038 / nature00939. PMID 12167863.
- Huang X, Seifert U, Salzmann U, Henklein P, Preissner R, Henke W, Sijts AJ, Kloetzel PM, Dubiel W (listopad 2002). „Místo RTP sdílené proteinem HIV-1 Tat a podjednotkou alfa regulátoru 11S je zásadní pro jejich účinky na funkci proteazomu včetně zpracování antigenu.“ Journal of Molecular Biology. 323 (4): 771–82. doi:10.1016 / S0022-2836 (02) 00998-1. PMID 12419264.
- Reiser G, Bernstein HG (prosinec 2002). „Neurony a plaky pacientů s Alzheimerovou chorobou vysoce exprimují protein dokující neuronovou membránu p42IP4 / centaurin alfa“. NeuroReport. 13 (18): 2417–9. doi:10.1097/00001756-200212200-00008. PMID 12499840.
- Gaddis NC, Chertova E, Sheehy AM, Henderson LE, Malim MH (květen 2003). „Komplexní vyšetření molekulárního defektu virionů typu 1 viru lidské imunodeficience s deficiencí vif“. Journal of Virology. 77 (10): 5810–20. doi:10.1128 / JVI.77.10.5810-5820.2003. PMC 154025. PMID 12719574.