Podle Weitzenböckovy nerovnosti se
plocha z toho
trojúhelník je nanejvýš
(A2 + b2 + C2) ⁄ 4√3.


v matematika, Weitzenböckova nerovnost, pojmenoval podle Roland Weitzenböck, uvádí, že pro trojúhelník bočních délek
,
,
a oblast
, platí tato nerovnost:

Rovnost nastává tehdy a jen tehdy, je-li trojúhelník rovnostranný. Pedoeova nerovnost je zobecněním Weitzenböckovy nerovnosti. The Nerovnost Hadwiger-Finsler je posílená verze Weitzenböckovy nerovnosti.
Geometrický výklad a důkaz
Přepsání výše uvedené nerovnosti umožňuje konkrétnější geometrickou interpretaci, která zase poskytuje okamžitý důkaz.[1]

Nyní jsou summandy na levé straně oblasti rovnostranných trojúhelníků vztyčených po stranách původního trojúhelníku, a tudíž v nerovnosti se uvádí, že součet ploch rovnostranných trojúhelníků je vždy větší nebo roven trojnásobku plochy původního trojúhelníku.

To lze nyní ukázat trojnásobnou replikací oblasti trojúhelníku v rámci rovnostranných trojúhelníků. K dosažení tohoto cíle Fermatův bod se používá k rozdělení trojúhelníku na tři tupé subtriangles s a
úhel a každý z těchto dílčích trojúhelníků se třikrát replikuje v rovnostranném trojúhelníku vedle něj. To funguje, pouze pokud je každý úhel trojúhelníku menší než
, protože jinak Fermatův bod není umístěn uvnitř trojúhelníku a místo toho se stává vrcholem. Pokud je však jeden úhel větší nebo rovný
je možné replikovat celý trojúhelník třikrát v rámci největšího rovnostranného trojúhelníku, takže součet ploch všech rovnostranných trojúhelníků zůstává stejně větší než trojnásobná plocha trojúhelníku.
Další důkazy
Důkaz této nerovnosti byl položen jako otázka v Mezinárodní matematická olympiáda z roku 1961. I přesto není výsledek příliš obtížné odvodit pomocí Heronův vzorec pro oblast trojúhelníku:
![{ displaystyle { begin {aligned} Delta & {} = { frac {1} {4}} { sqrt {(a + b + c) (a + bc) (b + ca) (c + ab )}} [4pt] & {} = { frac {1} {4}} { sqrt {2 (a ^ {2} b ^ {2} + a ^ {2} c ^ {2} + b ^ {2} c ^ {2}) - (a ^ {4} + b ^ {4} + c ^ {4})}}. end {zarovnáno}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/21dd75a6177de67d6747295247213353f0cec7ec)
První metoda
Je možné ukázat, že oblast vnitřní Napoleonův trojúhelník, což musí být nezáporné, je[2]

takže výraz v závorkách musí být větší nebo roven 0.
Druhá metoda
Tato metoda nepředpokládá žádnou znalost nerovností, kromě toho, že všechny čtverce jsou nezáporné.
![{ displaystyle { begin {aligned} {} & (a ^ {2} -b ^ {2}) ^ {2} + (b ^ {2} -c ^ {2}) ^ {2} + (c ^ {2} -a ^ {2}) ^ {2} geq 0 [5pt] {} iff & 2 (a ^ {4} + b ^ {4} + c ^ {4}) - 2 ( a ^ {2} b ^ {2} + a ^ {2} c ^ {2} + b ^ {2} c ^ {2}) geq 0 [5pt] {} iff & { frac { 4 (a ^ {4} + b ^ {4} + c ^ {4})} {3}} geq { frac {4 (a ^ {2} b ^ {2} + a ^ {2} c ^ {2} + b ^ {2} c ^ {2})} {3}} [5pt] {} iff & { frac {(a ^ {4} + b ^ {4} + c ^ {4}) + 2 (a ^ {2} b ^ {2} + a ^ {2} c ^ {2} + b ^ {2} c ^ {2})} {3}} geq 2 (a ^ {2} b ^ {2} + a ^ {2} c ^ {2} + b ^ {2} c ^ {2}) - (a ^ {4} + b ^ {4} + c ^ {4 }) [5pt] {} iff & { frac {(a ^ {2} + b ^ {2} + c ^ {2}) ^ {2}} {3}} geq (4 Delta ) ^ {2}, end {zarovnáno}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4617865b1dccdd0982a5460e4a76759aeef7c07b)
a výsledek následuje okamžitě tím, že vezmeme kladnou druhou odmocninu obou stran. Z první nerovnosti také vidíme, že rovnost nastává pouze tehdy
a trojúhelník je rovnostranný.
Třetí metoda
Tento důkaz předpokládá znalost Nerovnost mezi AM a GM.

Protože jsme použili aritmeticko-geometrický průměr nerovnosti, rovnost nastane, pouze když
a trojúhelník je rovnostranný.
Čtvrtá metoda
Psát si
takže součet
a
tj.
. Ale
, tak
.
Viz také
Poznámky
- ^ Claudi Alsina, Roger B. Nelsen: Geometrické důkazy nerovností Weitzenböck a Hadwiger-Finsler. Mathematics Magazine, sv. 81, č. 3 (červen 2008), s. 216–219 (JSTOR )
- ^ Coxeter, H.S.M. a Greitzer, Samuel L. Geometrie Revisited, strana 64.
Odkazy a další čtení
- Claudi Alsina, Roger B. Nelsen: Když je méně více: Vizualizace základních nerovností. MAA, 2009, ISBN 9780883853429, str. 84-86
- Claudi Alsina, Roger B. Nelsen: Geometrické důkazy nerovností Weitzenböck a Hadwiger-Finsler. Mathematics Magazine, sv. 81, č. 3 (červen 2008), s. 216–219 (JSTOR )
- D. M. Batinetu-Giurgiu, Nicusor Minculete, Nevulai Stanciu: Některé geometrické nerovnosti typu Ionescu-Weitzebböck. International Journal of Geometry, sv. 2 (2013), č. 1, duben
- D. M. Batinetu-Giurgiu, Nevulai Stanciu: Nerovnost Ionescu - Weitzenböck. MateInfo.ro, duben 2013, (online kopie )
- Daniel Pedoe: Na některých geometrických nerovnostech. Matematický věstník, sv. 26, č. 272 (prosinec 1942), s. 202-208 (JSTOR )
- Roland Weitzenböck: Über eine Ungleichung in der Dreiecksgeometrie. Mathematische Zeitschrift, svazek 5, 1919, str. 137-146 (online kopie na Göttinger Digitalisierungszentrum )
- Dragutin Svrtan, Darko Veljan: Neeuklidovské verze některých nerovností klasického trojúhelníku. Forum Geometricorum, svazek 12, 2012, s. 197–209 (online kopie )
- Mihaly Bencze, Nicusor Minculete, Ovidiu T. Pop: Nové nerovnosti pro trojúhelník. Octogon Mathematical Magazine, sv. 17, č. 1, duben 2009, s. 70–89 (online kopie )
externí odkazy