H3K79me2 - H3K79me2
H3K79me2 je epigenetický modifikace obalového proteinu DNA Histon H3. Je to značka označující di-methylace na 79 lysin zbytek proteinu histonu H3. H3K79me2 je detekován v transkribovaných oblastech aktivních genů.
Nomenklatura
H3K79me2 označuje dimethylace z lysin 79 na histonové H3 proteinové podjednotce:[1]
Zkr. | Význam |
H3 | Rodina histonů H3 |
K. | standardní zkratka pro lysin |
79 | poloha zbytku aminokyseliny (počítáno od N-konce) |
mě | methylová skupina |
2 | počet přidaných methylových skupin |
Methylace lysinu
Tento diagram ukazuje progresivní methylaci lysinového zbytku. Di-methylace označuje methylaci přítomnou v H3K79me2.[2]
Histonové modifikace
Genomová DNA eukaryotických buněk je obalena speciálními proteinovými molekulami známými jako Histony. Komplexy vytvořené smyčkováním DNA jsou známé jako chromatin. Základní strukturní jednotkou chromatinu je nukleosom: skládá se z jádra oktameru histonů (H2A, H2B, H3 a H4), stejně jako linkerového histonu a asi 180 párů bází DNA. Tyto základní histony jsou bohaté na zbytky lysinu a argininu. Karboxylový (C) terminální konec těchto histonů přispívá k interakcím histon-histon, stejně jako k interakcím histon-DNA. Amino (N) terminálně nabité konce jsou místem posttranslačních modifikací, jako jsou ty, které jsou vidět na H3K36me3.[3][4]
Epigenetické důsledky
Posttranslační modifikace histonových ocasů buď komplexy modifikujícími histon nebo komplexy remodelace chromatinu jsou interpretovány buňkou a vedou ke komplexnímu kombinatorickému transkripčnímu výstupu. Předpokládá se, že a Histonový kód diktuje expresi genů komplexní interakcí mezi histony v konkrétní oblasti.[5] Současné chápání a interpretace histonů pochází ze dvou velkých projektů: ZAKÓDOVAT a epigenomický plán.[6] Účelem epigenomické studie bylo vyšetřit epigenetické změny v celém genomu. To vedlo ke stavům chromatinu, které definují genomové oblasti seskupením interakcí různých proteinů a / nebo modifikací histonů dohromady. Stavy chromatinu byly zkoumány v buňkách Drosophila zkoumáním vazebného místa proteinů v genomu. Použití Sekvenování čipů odhalené oblasti v genomu charakterizované různými pruhy.[7] Různá vývojová stadia byla profilována také v Drosophile, důraz byl kladen na význam modifikace histonu.[8] Pohled na získaná data vedl k definici stavů chromatinu na základě modifikací histonu.[9]
Lidský genom byl komentován stavy chromatinu. Tyto anotované stavy lze použít jako nové způsoby anotace genomu nezávisle na podkladové sekvenci genomu. Tato nezávislost na sekvenci DNA prosazuje epigenetickou povahu modifikací histonu. Chromatinové stavy jsou také užitečné při identifikaci regulačních prvků, které nemají definovanou sekvenci, jako jsou zesilovače. Tato další úroveň anotace umožňuje hlubší pochopení buněčné specifické regulace genů.[10]
Tři formy methylace H3K79 (H3K79me1; H3K79me2; H3K79me3) jsou katalyzovány pomocí DOT1 v kvasinkách nebo DOT1L u savců. Methylace H3K79 se účastní reakce poškození DNA a má několik rolí v opravě excizí nukleotidů a rekombinační opravě sesterských chromatidů.[11]
V transkribovaných oblastech aktivních genů byla detekována dimethylace H3K79.[2]
Metody
Histonovou značku H3K36me3 lze detekovat různými způsoby:
1. Sekvenování imunoprecipitace chromatinu (Sekvenování čipů ) měří množství obohacení DNA, jakmile je navázáno na cílový protein a imunoprecipitováno. Výsledkem je dobrá optimalizace a používá se in vivo k odhalení vazby DNA-protein vyskytující se v buňkách. ChIP-Seq lze použít k identifikaci a kvantifikaci různých fragmentů DNA pro různé modifikace histonu podél genomové oblasti.[12]
2. Sekvenování mikrokokokové nukleázy (MNase-seq ) se používá k vyšetřování oblastí, které jsou vázány dobře umístěnými nukleosomy. K identifikaci polohy nukleosomů se používá použití mikrokokokového nukleázového enzymu. Je vidět, že dobře umístěné nukleosomy mají obohacení sekvencí.[13]
3. Stanovení sekvenování chromatinu přístupného pro transposázu (ATAC-seq ) slouží k průzkumu oblastí, které neobsahují nukleosomy (otevřený chromatin). Používá hyperaktivní Transpozon Tn5 zvýraznit lokalizaci nukleosomů.[14][15][16]
Viz také
Reference
- ^ Huang, Suming; Litt, Michael D .; Ann Blakey, C. (2015-11-30). Epigenetická genová exprese a regulace. 21–38. ISBN 9780127999586.
- ^ A b Farooq, Zeenat; Banday, Shahid; Pandita, Tej K .; Altaf, Mohammad (2016). „Mnoho tváří methylace histonu H3K79“. Výzkum mutací / Recenze v oblasti výzkumu mutací. 768: 46–52. doi:10.1016 / j.mrrev.2016.03.005. PMC 4889126. PMID 27234562.
- ^ Ruthenburg AJ, Li H, Patel DJ, Allis CD (prosinec 2007). "Multivalentní zapojení úprav chromatinu spojenými vazebnými moduly". Recenze přírody. Molekulární buněčná biologie. 8 (12): 983–94. doi:10.1038 / nrm2298. PMC 4690530. PMID 18037899.
- ^ Kouzarides T (únor 2007). "Úpravy chromatinu a jejich funkce". Buňka. 128 (4): 693–705. doi:10.1016 / j.cell.2007.02.005. PMID 17320507.
- ^ Jenuwein T, Allis CD (srpen 2001). "Překlad histonového kódu". Věda. 293 (5532): 1074–80. CiteSeerX 10.1.1.453.900. doi:10.1126 / science.1063127. PMID 11498575.
- ^ Birney E, Stamatoyannopoulos JA, Dutta A Guigó R, Gingeras TR, Margulies EH a kol. (Konsorcium projektu ENCODE) (červen 2007). „Identifikace a analýza funkčních prvků v 1% lidského genomu pilotním projektem ENCODE“. Příroda. 447 (7146): 799–816. Bibcode:2007Natur.447..799B. doi:10.1038 / nature05874. PMC 2212820. PMID 17571346.
- ^ Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B (říjen 2010). „Systematické mapování polohy proteinu odhaluje pět hlavních typů chromatinu v buňkách Drosophila“. Buňka. 143 (2): 212–24. doi:10.1016 / j.cell.2010.09.009. PMC 3119929. PMID 20888037.
- ^ Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML a kol. (modENCODE Consortium) (prosinec 2010). "Identifikace funkčních prvků a regulačních obvodů pomocí Drosophila modENCODE". Věda. 330 (6012): 1787–97. Bibcode:2010Sci ... 330.1787R. doi:10.1126 / science.1198374. PMC 3192495. PMID 21177974.
- ^ Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J a kol. (Březen 2011). "Komplexní analýza krajiny chromatinu v Drosophila melanogaster". Příroda. 471 (7339): 480–5. Bibcode:2011 Natur.471..480K. doi:10.1038 / nature09725. PMC 3109908. PMID 21179089.
- ^ Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z a kol. (Roadmap Epigenomics Consortium) (únor 2015). „Integrativní analýza 111 referenčních lidských epigenomů“. Příroda. 518 (7539): 317–30. Bibcode:2015Natur.518..317.. doi:10.1038 / příroda14248. PMC 4530010. PMID 25693563.
- ^ Chen Y, Zhu WG (červenec 2016). „Biologická funkce a regulace methylace histonového a nehistonového lysinu v reakci na poškození DNA“. Acta Biochim. Biophys. Hřích. (Šanghaj). 48 (7): 603–16. doi:10.1093 / abbs / gmw050. PMID 27217472.
- ^ „Chromatinové IP sekvenování celého genomu (ChIP-Seq)“ (PDF). Illumina. Citováno 23. října 2019.
- ^ „MAINE-Seq / Mnase-Seq“. osvětlení. Citováno 23. října 2019.
- ^ Buenrostro, Jason D .; Wu, Peking; Chang, Howard Y .; Greenleaf, William J. (2015). „ATAC-seq: Metoda pro stanovení dostupnosti chromatinu v celém genomu“. Současné protokoly v molekulární biologii. 109: 21.29.1–21.29.9. doi:10.1002 / 0471142727.mb2129s109. ISBN 9780471142720. PMC 4374986. PMID 25559105.
- ^ Schep, Alicia N .; Buenrostro, Jason D .; Denny, Sarah K .; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J. (2015). „Strukturované otisky nukleosomů umožňují mapování chromatinové architektury ve vysokém rozlišení v regulačních oblastech“. Výzkum genomu. 25 (11): 1757–1770. doi:10,1101 / gr.192294.115. ISSN 1088-9051. PMC 4617971. PMID 26314830.
- ^ Song, L .; Crawford, G. E. (2010). „DNase-seq: Technika s vysokým rozlišením pro mapování aktivních genových regulačních prvků napříč genomem z savčích buněk“. Cold Spring Harbor Protocols. 2010 (2): pdb.prot5384. doi:10.1101 / pdb.prot5384. ISSN 1559-6095. PMC 3627383. PMID 20150147.