v výroba párů, foton vytváří pár elektronových pozitronů. V procesu rozptylu fotonů vzduch (např. v Blesk nejdůležitějšími interakcemi je rozptyl fotonů v jádrech atomy nebo molekuly. Plný kvantově mechanické proces výroby párů lze popsat zde uvedeným čtyřnásobným diferenciálním průřezem:[1]
![{ begin {aligned} d ^ {4} sigma & = { frac {Z ^ {2} alpha _ {{ textrm {fine}}} ^ {3} c ^ {2}} {(2 pi) ^ {2} hbar}} | { mathbf {p}} _ {+} || { mathbf {p}} _ {-} | { frac {dE _ {+}} { omega ^ { 3}}} { frac {d Omega _ {+} d Omega _ {-} d Phi} {| { mathbf {q}} | ^ {4}}} times & times vlevo [- { frac {{ mathbf {p}} _ {-} ^ {2} sin ^ {2} Theta _ {-}} {(E _ {-} - c | { mathbf {p} } _ {-} | cos Theta _ {-}) ^ {2}}} vlevo (4E _ {+} ^ {2} -c ^ {2} { mathbf {q}} ^ {2} vpravo) vpravo. & - { frac {{ mathbf {p}} _ {+} ^ {2} sin ^ {2} Theta _ {+}} {(E _ {+} - c | { mathbf {p}} _ {+} | cos Theta _ {+}) ^ {2}}} vlevo (4E _ {-} ^ {2} -c ^ {2} { mathbf {q} } ^ {2} right) & + 2 hbar ^ {2} omega ^ {2} { frac {{ mathbf {p}} _ {+} ^ {2} sin ^ {2} Theta _ {+} + { mathbf {p}} _ {-} ^ {2} sin ^ {2} Theta _ {-}} {(E _ {+} - c | { mathbf {p} } _ {+} | cos Theta _ {+}) (E _ {-} - c | { mathbf {p}} _ {-} | cos Theta _ {-})}}} & + 2 left. { Frac {| { mathbf {p}} _ {+} || { mathbf {p}} _ {-} | sin Theta _ {+} sin Theta _ {-} cos Phi} {(E _ {+} - c | { mathbf {p}} _ {+} | cos Theta _ {+}) (E _ {-} - c | { mathbf {p}} _ {-} | cos Theta _ {-})}} vlevo (2E _ {+} ^ {2} + 2E _ {-} ^ {2} -c ^ {2} { mathbf {q}} ^ {2} right) right]. end {zarovnáno}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/096458d01cf33067dda220a05466e29836b2d565)
s

Tento výraz lze odvodit pomocí kvantově mechanické symetrie mezi produkcí páru a Bremsstrahlung.
je protonové číslo,
the konstanta jemné struktury,
snížený Planckova konstanta a
the rychlost světla. Kinetické energie
pozitronu a elektronu souvisí s jejich celkovou energií
a momenta
přes

Uchování energie výnosy

Hybnost
z virtuální foton mezi dopadajícím fotonem a jádrem je:

kde jsou pokyny uvedeny pomocí:

kde
je hybnost dopadajícího fotonu.
Aby bylo možné analyzovat vztah mezi energií fotonu
a emisní úhel
mezi fotonem a pozitronem byly integrovány Köhn a Ebert [2] čtyřnásobný diferenciální průřez
a
. Dvojitý diferenciální průřez je:

s
![{ begin {aligned} I_ {1} & = { frac {2 pi A} {{ sqrt {( Delta _ {2} ^ {{(p)}}) ^ {2} + 4p _ {+ } ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}}}}} & times ln left ({ frac {( Delta _ {2} ^ {{(p)}}) ^ {2} + 4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} - { sqrt {( Delta _ {2} ^ {{(p)}}) ^ {2} + 4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}}} ( Delta _ {1} ^ {{(p)}} + Delta _ {2} ^ {{(p)}}) + Delta _ {1} ^ {{(p)}} Delta _ {2} ^ {{(p)}}} {- ( Delta _ {2} ^ {{(p)}}) ^ {2} -4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} - { sqrt {( Delta _ {2} ^ {{(p)}}) ^ {2} + 4p _ {+} ^ {2} p _ {-} ^ { 2} sin ^ {2} Theta _ {+}}} ( Delta _ {1} ^ {{(p)}} - Delta _ {2} ^ {{(p)}}) + Delta _ {1} ^ {{(p)}} Delta _ {2} ^ {{(p)}}}} vpravo) & times left [-1 - { frac {c Delta _ {2} ^ {{(p)}}} {p _ {-} (E _ {+} - cp _ {+} cos Theta _ {+})}} + { frac {p _ {+} ^ {2 } c ^ {2} sin ^ {2} Theta _ {+}} {(E _ {+} - cp _ {+} cos Theta _ {+}) ^ {2}}} - { frac { 2 hbar ^ {2} omega ^ {2} p _ {-} Delta _ {2} ^ {{(p)}}} {c (E _ {+} - cp _ {+} cos Theta _ { +}) (( Delta _ {2} ^ {{(p)}}) ^ {2} + 4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+})}} right], I_ {2} & = { frac {2 pi Ac} {p _ {-} (E _ {+} - cp _ {+} cos Theta _ {+} ) }} ln left ({ frac {E _ {-} + p _ {-} c} {E _ {-} - p _ {-} c}} right), I_ {3} & = { frac {2 pi A} {{ sqrt {( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c ) ^ {2} + 4 m ^ {2} c ^ {4} p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}}}}}} & times ln { Bigg (} { Big (} (E _ {-} + p _ {-} c) (4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} (E _ {-} - p _ {-} c) + ( Delta _ {1} ^ {{(p)}} + Delta _ {2} ^ {{(p)}}) (( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) & - { sqrt {( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2} + 4 m ^ {2} c ^ {4} p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}}})) { Big)} { Big (} (E _ {- } -p _ {-} c) (4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} (- E _ {-} - p _ {-} c) & + ( Delta _ {1} ^ {{(p)}} - Delta _ {2} ^ {{(p)}}) (( Delta _ {2} ^ {{(p)} } E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) - { sqrt {( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2} + 4 m ^ {2} c ^ {4} p _ {+} ^ {2} p _ {-} ^ { 2} sin ^ {2} Theta _ {+}}})) { Big)} ^ {{- 1}} { Bigg)} & times left [{ frac {c ( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c)} {p _ {-} (E _ {+} - cp _ {+} cos Theta _ {+})}} vpravo. & + { Big [} (( Delta _ {2} ^ {{(p )}}) ^ {2} + 4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}) (E _ {-} ^ {3} + E_ { -} p _ {-} c) + p _ {-} c (2 (( Delta _ {1} ^ {{(p)}}) ^ {2} -4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}) E _ {-} p _ {-} c & + Delta _ {1} ^ {{(p)}} Delta _ {2} ^ {{(p)}} (3E _ {-} ^ {2} + p _ {-} ^ {2} c ^ {2})) { Big]} { Big [} ( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2} + 4 m ^ {2} c ^ {4} p_ { +} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} { Big]} ^ {{- 1}} & + { Big [} -8p_ { +} ^ {2} p _ {-} ^ {2} m ^ {2} c ^ {4} sin ^ {2} Theta _ {+} (E _ {+} ^ {2} + E _ {-} ^ {2}) - 2 hbar ^ {2} omega ^ {2} p _ {+} ^ {2} sin ^ {2} Theta _ {+} p _ {-} c ( Delta _ {2 } ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) & + 2 hbar ^ {2} omega ^ {2 } p _ {-} m ^ {2} c ^ {3} ( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p_ {-} c) { Big]} { Big [} (E _ {+} - cp _ {+} cos Theta _ {+}) (( Delta _ {2} ^ {{(p)}}) E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2} + 4 m ^ {2} c ^ {4} p _ {+} ^ {2} p_ { -} ^ {2} sin ^ {2} Theta _ {+}) { Big]} ^ {{- 1}} & + left. { Frac {4E _ {+} ^ {2} p _ {-} ^ {2} (2 ( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2} -4m ^ {2} c ^ {4} p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}) ( Delta _ {1 } ^ {{(p)}} E _ {-} + Delta _ {2} ^ {{(p)}} p _ {-} c)} {(( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{ (p)}} p _ {-} c) ^ {2} + 4 m ^ {2} c ^ {4} p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}) ^ {2}}} right], I_ {4} & = { frac {4 pi Ap _ {-} c ( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c)} {( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2} + 4 m ^ {2} c ^ {4} p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}}} + { frac {16 pi E _ {+} ^ {2} p _ {-} ^ {2} A ( Delta _ {2} ^ {{(p) }} E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2}} {(( Delta _ {2} ^ {{(p)}} E_ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2} + 4 m ^ {2} c ^ {4} p _ {+} ^ {2} p _ {- } ^ {2} sin ^ {2} Theta _ {+}) ^ {2}}}, I_ {5} & = { frac {4 pi A} {(- ( Delta _ { 2} ^ {{(p)}}) ^ {2} + ( Delta _ {1} ^ {{(p)}}) ^ {2} -4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}) (( Delta _ {2} ^ {{(p)}} E _ {-} + Delta _ {1} ^ {{(p)} } p _ {-} c) ^ {2} + 4 m ^ {2} c ^ {4} p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} )}} & times left [{ frac { hbar ^ {2} omega ^ {2} p _ {-} ^ {2}} {E _ {+} cp _ {+} cos Theta _ {+}}} { Big [} E _ {-} [2 ( Delta _ {2} ^ {{(p)}}) ^ {2} (( Delta _ {2} ^ {{(p) }}) ^ {2} - ( Delta _ {1} ^ {{(p)}}) ^ {2}) + 8p _ {+} ^ {2} p _ {-} ^ {2} sin ^ { 2} Theta _ {+} (( Delt a _ {2} ^ {{(p)}}) ^ {2} + ( Delta _ {1} ^ {{(p)}}) ^ {2})]] vpravo. & + p_ { -} c [2 Delta _ {1} ^ {{(p)}} Delta _ {2} ^ {{(p)}} (( Delta _ {2} ^ {{(p)}}) ^ {2} - ( Delta _ {1} ^ {{(p)}}) ^ {2}) + 16 Delta _ {1} ^ {{(p)}} Delta _ {2} ^ { {(p)}} p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+}] { Big]} { Big [} ( Delta _ { 2} ^ {{(p)}}) ^ {2} + 4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} { Big]} ^ {{-1}} & + { frac {2 hbar ^ {2} omega ^ {2} p _ {{+}} ^ {2} sin ^ {2} Theta _ {+} ( 2 Delta _ {1} ^ {{(p)}} Delta _ {2} ^ {{(p)}} p _ {-} c + 2 ( Delta _ {2} ^ {{(p)} }) ^ {2} E _ {-} + 8p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} E _ {-})} {E _ {+} -cp _ {+} cos Theta _ {+}}} & - { Big [} 2E _ {+} ^ {2} p _ {-} ^ {2} {2 (( Delta _ {2 } ^ {{(p)}}) ^ {2} - ( Delta _ {1} ^ {{(p)}}) ^ {2}) ( Delta _ {2} ^ {{(p)} } E _ {-} + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2} + 8p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} [(( Delta _ {1} ^ {{(p)}}) ^ {2} + ( Delta _ {2} ^ {{(p)}}) ^ { 2}) (E _ {-} ^ {2} + p _ {-} ^ {2} c ^ {2}) & + 4 Delta _ {1} ^ {{(p)}} Delta _ { 2} ^ {{(p)}} E _ {-} p _ {-} c] } { Big]} { Big [} ( Delta _ {2} ^ {{(p)}} E _ {- } + Delta _ {1} ^ {{(p)}} p _ {-} c) ^ {2} + 4 m ^ {2} c ^ {4} p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} { B ig]} ^ {{- 1}} & - vlevo. { frac {8p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+} ( E _ {+} ^ {2} + E _ {-} ^ {2}) ( Delta _ {2} ^ {{(p)}} p _ {-} c + Delta _ {1} ^ {{(p) }} E _ {-})} {E _ {+} - cp _ {+} cos Theta _ {+}}} vpravo], I_ {6} & = - { frac {16 pi E_ { -} ^ {2} p _ {+} ^ {2} sin ^ {2} Theta _ {+} A} {(E _ {+} - cp _ {+} cos Theta _ {+}) ^ { 2} (- ( Delta _ {2} ^ {{(p)}}) ^ {2} + ( Delta _ {1} ^ {{(p)}}) ^ {2} -4p _ {+} ^ {2} p _ {-} ^ {2} sin ^ {2} Theta _ {+})}} end {zarovnáno}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89082d84daae3b60c3793714c522e974deaa7739)
a

Tento průřez lze použít v simulacích Monte Carlo. Analýza tohoto výrazu ukazuje, že pozitrony jsou emitovány hlavně ve směru dopadajícího fotonu.
Reference
- ^ Bethe, H.A., Heitler, W., 1934. O zastavení rychlých částic a o vytváření pozitivních elektronů. Proc. Phys. Soc. Lond. 146, 83–112
- ^ Koehn, C., Ebert, U., Úhlová distribuce Bremsstrahlungových fotonů a pozitronů pro výpočet pozemských záblesků gama záření a pozitronových paprsků, Atmos. Res. (2014), sv. 135-136, str. 432-465